Mechanism of Zn Particle Oxidation by H2O and CO2 in the Presence of ZnO

نویسندگان

  • David Weibel
  • Zoran R. Jovanovic
  • Elena Gálvez
  • Aldo Steinfeld
چکیده

In this work we investigate the mechanism of Zn oxidation with CO2 and/or H2O to produce solar derived fuels (CO and/or H2) as part of the Zn/ZnO thermochemical redox cycle. It has been observed that the ZnO contamination of Zn produced by solar thermal reduction of ZnO (solar Zn) facilitates oxidation of the metallic Zn by CO2 and H2O, allowing for nearly complete conversion at temperatures as low as 350 °C. Reaching the same reaction extent starting with pure Zn requires considerably higher temperatures which imposes use of unconventional hard-to-operate reaction configurations utilizing Zn as vapor. The mechanism of this enhancement is investigated by studying the oxidation of solid Zn diluted with ZnO or Al2O3 at 350-400 °C utilizing thermogravimetry. It is found that ZnO acts as the site for the oxidation of Zn originating from the vapor phase, thereby serving as a sink for Zn vapor and maintaining the driving force for sustainable Zn sublimation. As this Zn sublimation competes with the growth of an impervious ZnO scale over the surface of the remaining solid Zn, the presence of the ZnO increases the reaction extent according to the magnitude of its surface area. This mechanism is supported by energy-dispersive X-ray (EDX) spectroscopy, revealing a substantial deposition of produced ZnO over the surface of the ZnO-seeded Al2O3 diluent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Gas Phase Oxidation of Acetaldehyde Reaction Mechanism and Kinetics

The mechanism of the low temperature oxidation of gaseous acetaldehyde was investigated in the temperature range of 1 50-400?°C. The minor, intermediate and major products were identified and measured quantitatively by sampling directly into the ionization chamber of an MS10-C2 mass spectrometer from the reactor. The formation of H2O, CO, CO2, HCOOH, H2, HCHO, CH3COOH and CH3OH as the major pro...

متن کامل

Influences of Co2+ & Er3+ Co-doping on the Structural and Physical Properties of ZnO Nanocrystals Synthesized by Hydrothermal Route

Co2+ & Er3+ co-doped ZnO nanocrystals were synthesized by the hydrothermal method at 180°C and pH= 12 for 48 h. Powder XRD patterns indicate that the Zn1-2xErxCoxO crystals (0.00<x≤0.035) are isostructural with ZnO. The cell parameters increase for Er3+ and Co2+ upon increasing the dopant content (x). SEM images show that doping of Er3+ and Co2+ into the sites of Zn2+ does not change the morpho...

متن کامل

Influences of Co2+ & Er3+ Co-doping on the Structural and Physical Properties of ZnO Nanocrystals Synthesized by Hydrothermal Route

Co2+ & Er3+ co-doped ZnO nanocrystals were synthesized by the hydrothermal method at 180°C and pH= 12 for 48 h. Powder XRD patterns indicate that the Zn1-2xErxCoxO crystals (0.00<x≤0.035) are isostructural with ZnO. The cell parameters increase for Er3+ and Co2+ upon increasing the dopant content (x). SEM images show that doping of Er3+ and Co2+ into the sites of Zn2+ does not change the morpho...

متن کامل

Determination of Suitable Concentrations of H2O and CO2 in the Feed of Syngas Production (RESEARCH NOTE)

Modeling and optimization of synthesis gas production via the non-catalytic partial oxidation of methane (NCPO) were studied by minimizing of Gibbs free energy, and comparison studies were carried out to analyze the mechanism of syngas production. For this purpose, concentrations of CO2 and H2O in the feed were optimized in specified pressure and temperature, such that the hydrogen to carbon mo...

متن کامل

Theoretical study of catalytic reduction of CO2 with H20 by BOC-MP method

Bond-Order Conservation-Morse Potential (BOC-MP) method is used to carry out the calculationon the CO2+ H20 system. One of the best catalysts for methanol synthesis in catalytic reductionof CO2 with H2O is Cu/ZnO/A1203 whose surface is supported by with some amount of Pd orGa. Reduction of CO2 with H20 on Cu will result in methanol formation; while on Ni will lead tomethane formation. In the me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2014